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e Refresher on and latent features
* The personalization spectrum between search and recommendations

* Leveraging a user’s signals to implement matrix factorization and
personalization from latent features

* Using embedding vectors to generate personalization profiles

* Mixing user signals and to generate
multimodal personalization

. to create personalization guardrails

* Avoiding the pitfalls of personalized search



Embeddings Word/Phrase Embeddings:
[5,1,3,4,2,1,5,3]
BIFEN(3 0,1,1,4,2]

Sentence Embeddings:
[2,3,2,4,2,1,5, 3]
[ 5’ 3’ 27 3’ ) O’ 3’ ]

Paragraph Embeddings:
[ 5’ 17 4’ 1’ O’ 27 4’ O ]
[ 1’ 1’ 4’ 2’ 1’ O’ O’ O ]

Document Embedding:
—[4,1,4,2,1,2,4,3]




An embedding is a set of coordinates
in vector space into which we map a
concept.



An inverted index creates embeddings,

with one dimension per term

apple caffeine cheese coffee drink donut food juice pizza tea water ..term N

latte 0] 0] 0] 0] 0] 0] 0] 0] 0] 0] 0]
cappuccino 0 0 0 0 0 0 0 0 0 0 0
apple juice 0] 0] 0] 0] 0] 0] 0] 0] 0]
cheese pizza 0 0 0 0 0 0 0] 0] 0]
donut 0] 0] 0] 0] 0] 0] 0] 0] 0] 0]
soda 0] 0] 0] 0] 0] 0] 0] 0] 0] 0] 0]
green tea 0 0 0 0 0] 0 0 0] 0] 0
water 0] 0] 0] 0] 0] 0] 0] 0] 0] 0]

cheese bread sticks 0 0] 0 0] 0 0] 0] 0 0 0
cinnamon sticks 0 0 0 0 0 0 0 0 0 0 0




Embedding (verb) maps concepts into another
vector space (usually a lower-dimensional space)

« apple juice 0 5 0] 0] 0] 4 4
cappuccino |0 5 3 0 4 1
cheese bread | 5 o) 4 5 o) 1 4
sticks
1 cheese pizza | 5 0 4 4 0
cinnamon 0] 1 5 0 3
g bread sticks
donut 5 o) 1 5 o) 4 ) 1
green tea 0] 5 0] 0 1 1 5
1 latte o) 5 4 0) 4 1 3 3
soda o) 5 0) 0 3 5 5 0
o water 0] 5 0] 0] 0 0 0 5




We then leverage the vector space to explore similarity

Phrase: Vector: Vector Similarity (a, b):
apple juice: [0,5,0,00,4,4, 3]

cappuccino: [O,5,3,0,4,1,2, 3] —

cheese bread sticks: [5,0,4,50,1,4,2]

cheese pizza: [5,0,4,4,0,1,5,2]

cinnamon bread sticks: [5,0,4,50,1,4,2]

donut: [5,0,1,50,4,5 1] yector Similarity Scores:

green tea: [0,50,0,2,1,1,5]

latte: [0, 5,4,0,4,1,3, 3] Ranked Results: Cheese Pizza Ranked Results: Green Tea
soda: [0,5,0,0,3,5,5 0]

water: [0,5,0,0,0,0,0,5]

0.19 water 0.19 donut




Embedding concepts into a vector space

https://atlas.nomic.ai/map/stablediffusion



With LLMs and other Foundation
Models, the dimensions learned
are Latent Features™.

*2 * We'll return to this later



Dimensions of User Intent

Personalized
Search

Collaborative
Recommendations

Keyword

Search User

Understanding

Content
Understanding

Semantic
Search

Domain-aware
Matching

Domain Knowledge Graph

Understanding




Personalization Spectrum

Traditional User-guided
Keyword Search Recommendations
(Completely User-specified) (Mostly driven by user profile,

partially user-specified)

L S

Personalized Traditional
Search Recommendations
(Mostly user-specified, (Completely driven by user profile)

partially driven by user profile)



Recommendations Approaches

Content-based Matching (Content Filtering)

@ detergent fabric softener

category:(laundry category:(laundry
. text: cleans(clothes)sootiess and removes : soft
Recommendations: | XOTIESRE text: sopensclothesana
stains leaving & Tresh citrus scent leaves & fresn citrus scent

-fabric softener
-dryer sheets

avyer sheets

categoryilaundry

text: removes static
electricity fromi(clothes)and
leaves a fresh citrus scent

Content-based Recommendations



Recommendations Approaches

Behavior-based Matching (Collaborative Filtering)

@ fertilizer add to cart screwdriver
click

. chase
Recommendations: soil =" s hammer
dase
-soil <Lk
il
-mulch mulch y,., natis

Jo) %)
U/‘C hase as@

Collaborative Recommendations



Recommendations Approaches

Content-based Matching (Content Filtering)  + Behavior-based Matching (Collaborative Filtering)

Prior User Interactions

OR drill »
category: tools Screwdriver purchase
text: automatically'drilljin 4dd to cart
: = hammer PUrchs,
: screws instead of using a burch e
Recommendations: : ase
screwdriver _ Pup, 30ty
-SCrews nails Ase roc%
-screwdriver Plrchase
-hammer
-nails screws

categoly: parts
text: used withGcrewdriver or
drill to fasten items together

Multi-modal Recommendations



Generating |atent behavioral
embeddings for personalization



Collaborative Filtering (Alternating Least Squares)

[
[ X N ) @ Alternating Least Squares (Matrix Factorization based Collaborative Filtering) Resu ItS °

. . . Root-mean-square error = 0.9589
from pyspark.ml.evaluation import RegressionEvaluator

from pyspark.ml.recommendation import ALS
from pyspark.sql import Row o= e -
|lusexrIndex| recommendations|
als = ALS(maxIter=3, rank=10, regParam=0.15, implicitPrefs=True, e ———— — e
userCol="userIndex", itemCol="productIndex", ratingCol="rating", 0| [{11, 0.014824464 . ..

coldStartStrategy="drop", seed=0) 11[{5, 0.010805087} :
2|[{7, 0.060263287}... |
|
I

3|1 [{1, 0.02967207}, ...

model = als.fit(indexed_prefs) (1) 4|[{14, 0.007906279...

predictions = model.transform(test) (1) o ——— —_ SR

evaluator = RegressionEvaluator(metricName="rmse", labelCol="rating",
predictionCol="prediction")

rmse = evaluator.evaluate(predictions)

print(f"Root-mean-square error = {rmse}")

|
|
(training, test) = indexed_prefs.randomSplit([©.8, ©.2], ) |
|
|

only showing top 5 rows

indexed_user_recs = model.recommendForAllUsers(10)
indexed_user_recs.show(5)



User: u478462

Previous Searches:
——apple
——macbook

Previous Product Interactions:

——type: click, name: Apple® - iPad® 2 with Wi-Fi - 16GB - Black
——type: add-to-cart, name: Apple® - iPad® 2 with Wi-Fi - 16GB - Black
——type: purchase, name: Apple® - iPad® 2 with Wi-Fi - 16GB - Black
——type: click, name: Apple® - MacBook® Air - Intel® Core™ i5 Processor

® @ Alternating Least Squares (Matrix Factorization based Collaborative Filtering)

def get_query_time_boosts(user, boosts_collection):

request = {"query": ,

"return_fields": ["product", "boost"],
"filters": [("user", user)] if user else [],
"limit": 10,

"order_by": [("boost", "desc")]}

response = boosts_collection.search(request)
signals_boosts = responsel["docs"]
return " ".join(F'"{b["product"]1}"~{b["boost"] * 100}' for b in signals_boosts)

def run_main_query(query, signals_boosts):
request = product_search_request(query if query else "")
request["query_boosts"] = signals_boosts if signals_boosts else
return products_collection.search(request)

recs_collection = engine.get_collection("user_item_recommendations")
user = "u478462"
boosts = get_query_time_boosts(user, recs_collection)

response = run_main_query(None, boosts)

print(f"Boost Query:\n{boosts}")
display_product_search("", responsel["docs"])

Boost Query:

"885909457588""75.393623 "097360810042""18.904798 "821793013776""15.852094 "610839379408""10.
217768000000001 "635753493559"79.087185 "885909395095""8.304988 "885909457595""7.917564000000
0005 "885909431618""7.375394 "885909459858""6.592548 "885909436002""6.1031554

Recommendations:

Search ‘

Name: Apple® - iPad® 2 with Wi-Fi - 16GB - Black | Manufacturer: Apple®

9.7" widescreen display; 802.11a/b/g/n Wi-Fi; Bluetooth; iBooks support; measures just 0.34" thin
and weighs only 1.35 Ibs.

Name: HTC - Flyer Tablet with 16GB Internal Memory - White | Manufacturer: HTC

Android 2.3 Gingerbread operating system7" color touch screenWi-Fi16GB memoryHTC notes,
Watch and Listen apps

Name: Asus - Eee Pad Transformer Tablet with 16GB Storage Memory - Brown/Black |
Manufacturer: Asus

Android 3.0 Honeycomb10.1" WXGA IPS touch screen Wi-Fi16GB hard drive

Name: Samsung - Galaxy Tab 10.1 - 16GB - Metallic Gray | Manufacturer: Samsung

Android 3.1 (Honeycomb) operating system10.1" WXGA touch screenWi-Fi

Name: Apple® - iPod touch® 32GB* MP3 Player (4th Generation - Latest Model) - Black |
Manufacturer: Apple®

FaceTime camera, HD video recording, Retina display, Multi-Touch interface; gorgeous 3.5"
widescreen display; Wi-Fi Web browsing

Name: Apple® - iPad® 2 with Wi-Fi - 32GB - Black | Manufacturer: Apple®

9.7" widescreen display; 802.11a/b/g/n Wi-Fi; Bluetooth; iBooks support




® ® @ Non-personalized Search Results

query = "tablet"

response = run_main_query (
query, None, 7
)
print(f"Non-personalized Query")
display_product_search(
query, responsel["docs"]

Non-personalized Query

:tablet

\ \ Search \

Name: nit™ - Tablet Sleeve - Olive | Manufacturer: Init™

Fits most tablets with up to a 10" display; heavy-duty neoprene material

Name: Memorial Tablet - CD | Manufacturer: Ltm/cd41

Name: Stone Tablet - CD | Manufacturer: Important Records

Name: Sony - AC Power Adapter for Sony Tablet S | Manufacturer: Sony

Compatible with Sony Tablet S; charges your tablet




Personalized Query

C W) @ Personalized Search Results tablet Search |

Name: Apple® - iPad® 2 with Wi-Fi - 16GB - Black | Manufacturer: Apple®

9.7" widescreen display; 802.11a/b/g/n Wi-Fi; Bluetooth; iBooks support; measures just 0.34" thin and weighs only 1.35 Ibs.

query = "tablet"

IECS_CO-L-LECt ion - engi ne ] gEt_C O-L-l-eCt 10n ( - Name: HTC - Flyer Tablet with 16GB Internal Memory - White | Manufacturer: HTC
n u S e I_ i t e m_r e C 0 mm e n d a t i 0 n s n . Android 2.3 Gingerbread operating system7" color touch screenWi-Fi16GB memoryHTC notes, Watch and Listen apps

)
user = "u478462"

Name: Asus - Eee Pad Transformer Tablet with 16GB Storage Memory - Brown/Black | Manufacturer: Asus

boosts = g et_ query _t ime _boosts ( Android 3.0 Honeycomb10.1" WXGA IPS touch screen Wi-Fi16GB hard drive
user, recs_collection
) Name: Samsung - Galaxy Tab 10.1 - 16GB - Metallic Gray | Manufacturer: Samsung
Android 3.1 (Honeycomb) operating system10.1" WXGA touch screenWi-Fi
response = Iun_main_query(query, boosts, 7) B Name: Apple® - iPad® 2 with Wi-Fi - 32GB - Black | Manufacturer: Apple®
pri n t ( f" P e r S 0 n a 'L i Z e d Q u e Iy n ) 9.7" widescreen display; 802.11a/b/g/n Wi-Fi; Bluetooth; iBooks support
display_product_search(query, responsel"docs"]) '

Name: Init™ - Tablet Sleeve - Olive | Manufacturer: Init™

Fits most tablets with up to a 10" display; heavy-duty neoprene material

Name: Memorial Tablet - CD | Manufacturer: Ltm/cd41




LLM-based embedding dimensions are latent features




...and collaborative filtering ALSO relies on latent features

*User 1: *User 2: *User 3: *User 4: :
*Avengers: Endgame *Black Panther *Black Widow *The Little Mermaid The Lion King
*Black Panther *Black Widow *The Dark Knight *The Lion King *Toy Story
*Black Widow *Captain Marvel eThe Batman *Toy Story eFrozen

Userl, User2, User3:

*All of these are movies about superheroes

*Most of them were made by Marvel Studios, though some
were made by Warner Brothers (DC Comics)

*They are all action movies
*They are not suitable for small children due to violence

and/or language

User4,

*All of them are animated movies

*All of them are suitable for small children
*All of them are made by Disney/Pixar




Starfing point for Collaborative Filtering:
User-ltem Interaction Matrix

Items
A
| |
Avengers: Black Notting The
Endgame Panther  Hill Notebo k|v| ftB hI
(Movie)  (Movie) (Movie) (Mov (Gm) (TV Show)

—

9

Users - 3 4 8 1

@@@@@




Matrix Factorization: learning latent features from user signals

Avengers: Black Knotting The The
Endgame Panther Hill Notebook Minecraft Bachelor
(Movie)  (Movie) (Movie) (Movie) (Game) (TV Show)

Avengers: Black Knotting The The
Endgame Panther Hill Notebook Minecraft Bachelor
0.67 | -0.51 | 2.81 (Movie) (Movie) (Movie) (Movie) (Game) (TV Show)
Latent Item
1.13 | 3.18 | -0.13 0.09 | 0.71 | 191 | 1.74 | 1.80 | 0.28 | fature

Latent Item

1.66 | -0.08 | 2.50 x 0.75 | 0.75 | 2.17 | 2.54 | -1.17 | 3.02 Feature 2

Latent Item

005! 2.76 | 2.29 343 | 221 | 0.01 | 0.46 | 1.89 | 0.30 | features

2.20 | 2.16 | -0.20

PO

DRVO®

Latent Latent Latent
User User User
Featurel Feature2 Feature3

User-Item Rankings (R) User Feature Matrix (U) ltem Feature Matrix (1)



Generating recommendations using collaborative filtering

Avengers: Black Notting The The
Endgame Panther Hill Notebook Minecraft Bachelor
(Movie) (Movie) (Movie) (Movie) (Game) (TV Show)
Avengers: Black Notting The The ' ' '
Endgame Panther Hill Notebook Minecraft Bachelor
0.67 |-0.51| 2.81 (Movie) (Movie) (Movie) (Movie) (Game) (TV Show) 9.32 -0.51

0.09 | 0.71 | 1.91 1.80 | 0.28

1.66 | -0.08 | 2.50 x 0.75 | 0.75 | 2.17 -1.17 | 3.02 = 866 | 664 | 3.02 384 | 781 | 097

299 343 | 2.21 | 0.01

1.89 | 0.30 9.92 7.10 5.92 7.98 1.01 9.01

-0.05 | 2.76

2.20 2.16 | -0.20 1.13 2.74 8.89 H 1.05 7.08

Calculating Preferences from Latent Factors:

Avengers: Endgame (Movie) The Notebook (Movie)

LROEE
OROEE

(0.67 * 0.09) + ( * 0.75) +(2.81 * 3.43) = 3.18 254 -0.13 0.46

9.32




BUT, we can also just use the latent features directly as behavioral
embeddings!

)
— — - £
0 [ @ ©
5% 59 &% S
=2 -8 8 2 - x “
c =S c 3 c 3 L & o (=}
q_sm Hm q_sm = 'E ] o) O —~
T0® WO ®O o S T O & S 2
o2 2 2 2
cs>s ¥S £33 <35 E OO
o gbo t0o 20 c® _GCJE
Z2 m2 22 2 52 FE

Latent Item
Feature 1

Latent Item
Feature 2

Latent Item
Feature 3

userl: [0.67, -0.51, 2.81] avengers_endgame: [0.09, 0.75, 3.43]
user2: [1.13, 3.18, -0.13] :[0.71, 0.75, 2.21]



Generating L_IVI-based
embeddings for personalization



Average the embeddings for their past N-
product interactions (purchases, add-to-carts,
clicks, etc.)



We can generate
based on both their

Current search: | microwave

GE - 0.7 Cu. Ft. Compact Microwave - Black

Dept Appliance Brand GE  Color Black

Hello Kitty - 0.7 Cu. Ft. Compact Microwave

Dept Photo/Commodities  Brand Hello Kitty

GE - 1.1 Cu. Ft. Mid-Size Microwave - White

for our users

INXDRAY relevant

Previous Interactions: | Hello Kitty Plush Toy | GE Electric Razor M)

VS.

GE Bright White
Light Bulbs Refrigerator

Samsung - Mid-Size Microwave - Stainless-steel €

Dept Appliance  Brand Samsung  Color Stainless-

Steel

Samsung - 1.7 Cu. Ft. Over-the-Range
Microwave - Stainless-Steel

Dept Appliance  Brand Samsung  Color Stainless-



Find the relevant query context and
generate user-embeddings dynamically
based on that context.



Clustering products by embedding is an easy way
fo generate categories to scope query context

o000 @ Clustering products to generate dynamic category contexts
def get_clusters(data, algorithm, args, kwds):
return algorithm(*args, **xkwds).fit(data)

def assign_clusters(labels, product_names):
clusters = defaultdict(lambda:[]1, {})

for i in range(®, len(labels)):
clusters| labels[i]l].append(product_names[1i])

return clusters

get_clusters(product_embeddings, cluster.KMeans, (),
{"n_clusters":100, "n_init":10, "random_state":0})

labels = algo.predict(product_embeddings)
assign_clusters(labels, product_names)

algo =

clusters =



Visualizing the clusters

@ Visualize the category contexts

import collections, numpy as np, matplotlib.pyplot as plt
from adjustText import adjust_text
from sklearn.decomposition import PCA

plt.figure(rigsize=(15, 15))

pca = PCA(100, svd_solver="full")
centers = algo.cluster_centers_
plot_data = pca.fit_transform(centers)

points = []
for i, cluster_name in enumerate(plot_data):
plt.scatter(plot_datali,®], plot_datali, 1],
§=30, color="k") (2)
label = A {i}_{"_".join(top_words(clusters[i],
points.append(plt.text(plot_datali, @],
plot_datali, 1],
label, size=12))
adjust_text(points, arrowprops=dict(arrowstyle="-",
color="gray", alpha=.3))
plt.show()
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Mapping queries into clusters (multiple approaches)

o0 @ Different approaches for mapping queries into clusters

import sentence_transformer, heapq

def get_top_labels_centers(query, centers, n=2):
g_emb = transformex.encode([query], convert_to_tensor=False)
similarities = sentence_transformers.util.cos_sim(q_emb, centers)
sim = similarities.tolist()[0]
return [sim.index(i) for i in heapqg.nlargest(n, sim)]

def get_query_cluster(query)
g_emb = transformer.encode([queryl, convert_to_tensor=False)
return algo.predict(q_emb)

def get_cluster_description(cluser_num):
return "_"

.join(top_words(clusters[cluser_numl, 5))

query = "microwave"

kmeans_predict = get_query_cluster(query)[0]

print("KMeans Predicted Cluster:")

print(r" {kmeans_predict} ({get_cluster_description(kmeans_predict)})")

closest_sim = get_top_labels_centers(query, centers, 1)[0]
print(f"\nCosine Predicted Cluster:")
print(f" {closest_sim} ({get_cluster_description(closest_sim)})")

knn_cosine_similarity = get_top_labels_centers(query, centers, 5)
print(f"\nKNN Cosine Predicted Clusters: {knn_cosine_similarity}")
for n in knn_cosine_similarity:

print(f" {n} ({get_cluster_description(n)})")

Results:

K-means Predicted Cluster:
44 (Microwave Cu. Ft. Stainless-Steel Oven)

Cosine Predicted Cluster:
44 (Microwave Cu. Ft. Stainless-Steel Oven)

KNN Cosine Predicted Clusters: [44, 52, 5, 83,
44 (Microwave Cu. Ft. Stainless-Steel Oven)
52 (Stainless-Steel 30" Black Range Cooktop)
5 (KitchenAid Black White Stand Mixer)

6]

83 (Black Coffeemaker Maker Coffee Stainless-Steel)
6 (Range 30" Self-Cleaning Freestanding Stainless-Steel)




Approaches for integrating embedding-based
personalization intfo search results

1.

Perform a weighted average between the query vector (embedding
for microwave) and the vectors for the user’s previous interactions
within the predicted clusters. This would generate a single vector

representing a personalized version of the user’s query, so all results
would be personalized.

Perform a standard search, but then boost the results based on the
average of the embeddings from a user’s previous interactions within the
predicted clusters. This would be a hybrid keyword and vector-based
ranking function, where the keyword search would be the primary driver
of the results, but the user’s previous interactions would be used to
boost related results higher.



Approaches for integrating embedding-based
personalization intfo search results

3.

Do one of the above, but then only personalize a few items in the search
results instead of all the results. This follows a light-touch mentality so as
not to disturb all of the user’s search results, while still injecting novelty
to enable the user to discover personalized items they may not have
otherwise found.

Perform a standard search (keyword or vector), but then re-rank the
results based on the weighted average between the query vector and
the vectors for the user’s previous interactions within the predicted
clusters. This uses the original search to find the candidate results using
the default relevance algorithm, but then those results are re-ranked to
boost personalized preferences higher.



Approaches for integrating embedding-based
personalization intfo search results

We’ll do this one, because it's more generalizable

across search engines for our example

implementation. There are times when each of the
/‘ approaches could make sense.

results based on the weighted average between the query vector and
the vectors for the user’s previous interactions within the predicted

\ boost personalized preferences higher.

/4. Perform a standard search (keyword or vector), but then re-rank the \

clusters. This uses the original search to find the candidate results using
the default relevance algorithm, but then those results are re-ranked to

%




Generating personalization vectors for a user’'s query

o0 0@ @ Generating a personalization vector for the user's query
import pandas, numpy

def get_user_embeddings(products=[]):
values = []
for p in products:
values.append([product_ids_emb[p],
top_clusters_for_embedding(product_ids_emb[pl, 1)[0]1])
column_names = ["embedding", "cluster"]
return pandas.DataFrame(data=numpy.array(values), index=products,
columns=column_names)

def get_personalization_vector(query=None,
user_items=[],
query_weight=1,
user_items_weights=[]):
query_embedding = transformer.encode(query) if query else None

if len(user_items) > @ and len(user_items_weights) = 0:
user_items_weights = numpy.full(shape=len(usexr_items),
fill_value=1 / len(user_items))

embeddings = []

embedding_weights = []

for weight in user_items_weights:
embedding_weights.append(weight)

for embedding in user_items:
embeddings.append(embedding)

if query_embedding.any():
embedding_weights.append(query_weight)
embeddings.append(query_embedding)

return numpy.average(embeddings, weights=numpy.array(embedding_weights),
axis=0).astype("double") if len(embeddings) else None



Generating contextual user personalization vectors

[ X ] @ Contextual (filtered) vs. Non-contextual (unfiltered) personalization vectors

product_interests = ["7610465823828",
"36725569478" ]

user_embeddings = get_user_embeddings (product_interests)
query = "microwave"

unfiltered_personalization_vector = get_personalization_vector(qguery=query,
user_items=user_embeddings['embedding'].to_numpy())

print("\nPersonalization Vector (No Cluster Guardrails):")

print(format_vector(unfiltered_personalization_vector))

query_clusters = get_top_labels_centers(query,
centers, n=5)
print("\nQuery Clusters ('microwave'):\n" + str(query_clusters))

clustered = user_embeddings.cluster.isin(query_clusters)
products_in_cluster = user_embeddings[clustered]
print("\nProducts Filtered to Query Clusters:\n" + str(products_in_cluster))

filtered_personalization_vector = get_personalization_vector(query=query,
user_items=filtered['embedding'].to_numpy())

print("\nFiltered Personalization Vector (With Cluster Guardrails):")

print(format_vector(filtered_personalization_vector))

Results:

Products Interactions for Personalization:

product embedding

7610465823828 [0.06417941, 0.04178553, -0.0017139615, -0.020...
36725569478 [0.0055417763, -0.024302201, -0.024139373, -0....

Persocnalization Vector (No Cluster Guardrails):

[0.016, -0.006, -0.02, -0.032, -0.016, 0.008, -0.0, 0.017, 0.011,

Query Clusters ('microwave'):

[44, 52, 5, 83, 6]

Products Filtered to Query Clusters:

product embedding

36725569478 [0.0055417763, -0.024302201, -0.024139373, -0...

Filtered Personalization Vector (With Cluster Guardrails):

cluster
1
6

0.007

cluster
6

[0.002, -0.023, -0.026, -0.037, -0.025, 0.002, -0.009, 0.007, 0.033,




Run different personalization scenarios

[ N X ) @ Run Different Personalization Scenarios

def rerank_with_personalization(docs, personalization_vector):
result_embeddings = numpy.array([product_ids_embl[docs[x]1["upc"]1]
for x in range(len(docs))]).astype(float)
similarities = sentence_transformers.util.cos_sim(
personalization_vector, result_embeddings).tolist()[0]
reranked = [similarities.index(i)
for i in heapqg.nlargest(len(similarities), similarities)]
reranked, v = zip(sorted(enumerate(similarities),
key=itemgetter(1), reverse=True))
return [docs[i] for i in reranked]

query = "microwave"
request = {"query": query,
"query_fields": ["name", "manufacturer"],
"return_fields": ["upc", "name", "manufacturer", "score"],
"limit": 100,
"order_by": [("score", "desc"), ("upc", "asc")I1}

response = products_collection.search(xrequest)
docs = responsel["docs"]

print("No Personalization:")
display_product_search(query, docs[0:4])

print("Global Personalization (no category guardrails):")
reranked_seach_results_no_guardrails = \
rerank_with_personalization(docs,
unfiltered_personalization_vector)
display_product_search(query, reranked_seach_results_no_guardrails[@:4])

print("Contextual Personalization (with category guardrails):")
reranked_seach_results_with_guardrails = \
rerank_with_personalization(docs,
filtered_personalization_vector)
display_product_search(query, reranked_seach_results_with_sguardrails[e:4])



No Personalization

' microwave

|| Search

Name: LG - Trim Kit for Select LG
Microwave Ovens - Stainless-Steel
Manufacturer: LG

Name: GE - Profile Advantium 1.7 Cu. Ft.

Over-the-Range Microwave - Stainless-
Steel/Black
Manufacturer: GE

Name: LG - 1.7 Cu. Ft. Over-the-Range
Microwave - Stainless-Steel
Manufacturer: LG

Name: GE - 1.1 Cu. Ft. Mid-Size
Microwave - Black
Manufacturer: GE

Naive Person

alization (No Guardrails)

| microwave

|| Search |

Name: Hello Kitty - 0.7 Cu. Ft. Compact
Microwave
Manufacturer: Hello Kitty

Name: Panasonic - 1.2 Cu. Ft. Mid-Size
Microwave - Stainless-Steel
Manufacturer: Panasonic

Name: Panasonic - 1.2 Cu. Ft. Mid-Size
Microwave - Stainless-Steel
Manufacturer: Panasonic

Name: Panasonic - 1.2 Cu. Ft. Mid-Size
Microwave - White
Manufacturer: Panasonic

microwave

|| Search |

Name: Samsung - 1.8 Cu. Ft. Over-the-

Range Microwave - Stainless-Steel
Manufacturer: Samsung

Name: Samsung - 1.8 Cu. Ft. Over-the-

Range Microwave - Stainless-Steel
Manufacturer: Samsung

Name: Samsung - 1.6 Cu. Ft. Over-the-

Range Microwave - Stainless-Steel
Manufacturer: Samsung

Name: Samsung - 1.7 Cu. Ft. Over-the-

Range Microwave - Stainless-Steel
Manufacturer: Samsung




Avoiding the pitfalls of personalized search

1. Account for the Cold Start Problem

2. Guardrails are important

3. Overpersonalization is frustrating!

4. Feedback loops are critical

5. Privacy can be a concern

6. You should apply personalization with a light touch



. given latent behavior embeddings and conter
based embeddings, we can integrate the dimensions from
both to discover new insights and enhance relevance

|
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The Notebook

Black Panther
(Movie)

(Movie)
Notting Hill
The Bachelor
(TV Show)

(Movie)
(Movie)
Minecraft
(Game)

Latent Item
Feature 1

Latent Item
Feature 2

Latent Item
Feature 3

userl: [0.67, -0.51, 2.81] avengers_endgame: [0.09, 0.75, 3.43]
user2: [1.13, 3.18, -0.13] :[0.71, 0.75, 2.21]




Multimodal Vector Search

Collaborative
~ User Signals
;Lu(/_‘ Image [ [ ) b b ) b ) QOO0 ]’ﬁ Encoder Layer

@% # EnCOder q[ ’ ’ ’ ’ ’ 9 eee ]7
{4 Layer
[0.00, 1.3, 26.9,0.23,0.0, 1.3, ... ]]

|

Concatenate

{

... "but | like to be [ ) 2 ’ )y ey e , , FORSA 2 e
here. Oh, | like it , , ..., 0.00, 1.3, 26.9,0.23,0.0, 1.3, ... ] ‘ qff e
a lot!" said the l gLt
Cat in the Hat to i
the fiSh in the = CATERPILLAR
pot... Multimodal Encoder /

Dimensionality Reduction

|



bbg near atlanta

It’s also powerful to use many
optimize search quality

Parse Query

Boosts: doc12:500, <
doc49:350,doc142:220 ...

query: +category:restaurants
+keywords:( bbg OR brisket

Signals Boosting

Knowledge Graph Lookup

v

OR pork OR ribs)
+geo_dist(location,
33.7537, -84.3863)
=> doc54, doc142, docl9, ...

Keyword Search (Inverted Index)

Dense Vector Search

A 4

o
<

Similar
recommendations:
docl7, doc28, ...

Backfill / Fallback (if too few results)

Re-rank and Return Results

v

to

Keyword:bbq
location: Atlanta, GA, USA

category: restaurants
related: brisket, pork, ribs
latitude: 33.7537, -84.3863

Cosine Similarity:
[1.09,0,12.02,0.01, ...]
=>docl42, docl9, docl0, ...

Results:
docl2, docl142, doc49, ...



Reflected Intelligence: So many ways to integrate user signals...

Signals Boosting Feedback Loop

1. User searches for "ipad" 2. Search logged and current model applied

User Query

ipad o IE—

3. Search returns boosted results

6. Model improved for future searches 5. Doc Interactions Aggregated Per Query

query: ipad Query | Document | Signal Boost
boost: doc224s42
boost: doc 1217

4, User takes action

Document

Learning to Rank
Initial Results: Final Results:

5 1) docl §_ 1) doc3
ol i ¥ 2) doc2 29 » 2) docl

3) doc3 3) doc2
— " Searches
User

T———takesan «—
action

-
Feature ; \—’

Build Ranking Classifier

(from Impilicit Relevance Judgements)

[user | avery |

Collaborative Filtering (Recommendations)

Recommendations for Alonzo: inad
« doc22: “iPad Pro" —- P

» doc12: “Kindle Fire" "‘

Related docs for Alonzo:

.

doc22: “iPad Pro"

doc12: “Kindle Fire" :z::

Document | Weight

User

__f-/‘b

=5 ==
s Searches

o
{
Users’ actions

Inform system

improvements
o User

—— takes an «——
action

\\*v

Matrix Factorization

Personal Preferences for Alonzo:
category: “tablefs” e
brand: “Apple” -ga "
+ color: "black" -
storage: “32GB" =

Related docs for query “ipad”:
* doc22: "iPad Pro" — -
+ doc12: “Kindle Fire" * N

Preferences

[tablets]
Brand: Apple
color: black
storage: 32GB

Query | Document

‘\‘\\\ 4

Signal Processing & Machine Learning



AI Powered Search
RAG (Retrieval Augmented Generation)

. Generative Search & Summarization
. Learning to Rank & implicit judgments
. Semantic Search
. Dense Vector Search

et . Fine-tuning LLMs for Search

torinn . Personalized Search & Recommendations
. Knowledge Graph Learning
. User signals boosting & click models
. Crowdsourced Relevance

o LT . Quantization techniques

] . Hybrid search
Code: Mices4s) . Multimodal search

Get a copy @ http://aiPoweredSearch.com



Thank Youl!

Trey Grainger

trey@searchkernel.com
@treygrainger

Other presentations:
http://treygrainger.com

Founder / CTO Technical Advisor:

earch kernel O

http://aiPoweredSearch.com



http://www.treygrainger.com/
http://www.treygrainger.com/
http://www.treygrainger.com/
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