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About idealo

5M+ products
500M+ offers

Active in 6 countries
(DE, AT, ES, IT, FR, UK)

18M+ app downloads

50.000+ shops
Germany’s 4th largest
ecommerce website

80M+ visits per month



Product Catalog



Product Catalog - Offers

vast majority of offers are not mapped to product catalogue!



Relevancy Signals at idealo

• The users buy in shops
o Purchase data is not directly observable at idealo.

• No "add to cart" like signals
o Price alerts / wishlists instead



Before LTR: Keyword Search @ idealo

• Customized Lucene
• Manually tuned boosts

o e.g. products over single offers
• Global item clicks and query-item clicks affect the boosts



Learning to Rank – The Problem

LTR Model

Users 
probably 

want apple 
tv



LTR Solution (ML reranking)

1.User sends query to a "searcher".

2.Searcher sends query to Lucene.

3.Receives results from Lucene.

4.Sends top 200 results to the LTR

endpoint.

5.Receives reranked results from the

endpoint.

6.Returns results to the user.



First steps. Setup a basic pipeline.

1. Collect user interactions (query-items clicks), 

including item features and query-item features.​

2. Set labels based on user interactions (0-4 scale 

based on click-through rate - CTR).​

3. Decide on the offline metric (we used NDCG).​

4. Choose on simple features.

5. Conduct notebook experiments. Build the model 

(LambdaMART is a likely candidate).​

6. Build the pipeline.​

7. Run A/B tests.​

Rules of machine learning: 
https://developers.google.com/machine-
learning/guides/rules-of-ml

https://developers.google.com/machine-learning/guides/rules-of-ml
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Data

query item 
id

Item 
position

text
relevancy

clicks impressions ctr category price relevance 
label

iphone 10 2 1000 369 1935 0.191 19116 100 4

iphone 20 1 1100 208 1915 0.109 19116 200 3

iphone 30 3 900 131 1887 0.069 19116 300 2

iphone 40 4 800 0 1935 0 2220 10 0

iphone x 70 2 5000 405 2165 0.187 19116 190 4

iphone x 80 1 5100 253 2152 0.118 19116 250 3

iphone x 90 3 4900 143 2119 0.067 19116 340 2

iphone x 100 4 3000 0 2119 0 2220 30 0

query-item features item features



Challenge #1: Get better NDCG than the baseline.

Problem:
• Clicks and labels are biased toward the baseline 

ranking, introducing position bias.
Proposed solutions:
• You don't necessarily need a much better NDCG

than the current baseline. It is more important 
what the model learned. But we still wanted to 
have it slightly better :).

• If you can get LLM labeling, you'll have an 
unbiased evaluation of labels.

• Evaluating and incorporating bias can be 
challenging.

• We didn't use position features for training, but 
maybe we should have.

Rene Kriegler - An approach to modelling implicit user feedback for optimising e-commerce search – Haystack 22



Challenge #2: Hidden bugs

Problem:
• There are many opportunities for bugs that do not produce errors 

but yield incorrect results.
• Incorrect metric implementation (for example, handling ties) and 

applied in a wrong way.
• Data leakage (taking features from the future).
• ...

Proposed solutions: tests, understand details :).



Use UI evaluation as well

Do UI side by side comparison to develop 
intuition about the model. Develop tools for 
easy debugging of the model. 

red indicates high values and blue indicates low 
values



Challenge #3: Building the pipeline

Problem:
• Time-consuming setup. 

While it provides 
immense convenience 
once established.

• Error-prone 
implementation.

• A lot of IaC code.
Proposed solution:
• If there's nothing to 

update during an A/B 
test, skip this step until 
you get a good A/B test 
result.



Challenge #4: The same model in production as 
during training

Problem:
• Discrepancies between experimental 

and inference code.
• Incorrect feature passing to inference 

endpoints.

Proposed solutions: 
• Ensure training-serving parity. 
• Make sure you can debug what features 

being passed to your model.
• NDCG evaluation across the entire 

search.



Challenge #5: Differentiating click data in A/B test

Problem:
• Distinguish clicks from new ML model vs. 

static ranking during A/B test.
• Achieving this distinction was difficult for 

us.
Proposed solutions:
• When an A/B test for a new ranking model 

begins, clicks generated by the baseline
(control) ranking system should no longer 
be considered.

• If not possible, check for data leakage
effects.

• It is better to avoid retraining during A/B 
test.



Challenge #6: Deployed in production. How to 
retrain?

The feedback loop problem:
• Model performance degrades when it's 

trained on implicit feedback (e.g., clicks) 
that was generated by its own previous 
rankings.

• Initial biases are amplified over time.

Potential solutions: breaking the cycle
• Generate unbiased labels with LLM. 
• Implement exploration traffic. 
• Apply bias correction.

Changes of features importance since the 
model deployed in production. Text 
relevance feature importance dropped 
significantly. Previous query items CTR 
feature importance increased drastically.



Challenge #7: What to monitor?

Besides technical metrics like latency and 
errors, we suggest to track overall click-
through rate (CTR) at the beginning. Then 
many fancy things like concept drift, data 
drift and so on.

Important: Avoid tracking differences in 
NDCG between a baseline ranking and your 
new ranking. This can be misleading 
because user clicks are inherently biased 
towards the existing production model.



Challenge #8: Latency

• Prioritize vectorized operations:
• Vectorized (fast): 
df["ratio"] = 100 * (df["x"] / 
df["y"])
• Row-wise (slow):
df["ratio"] = 
df.apply(calculate_ratio)

• LightGBM & high cardinality categorical 
features: treat high-cardinality categorical 
features (2K categories, for example) as 
numerical for improved performance.

• Solution: validate performance, conduct 
thorough benchmark and load tests.



Stats

• Average RPS: 60
• Average latency: 40ms
• Model: custom image of Lambdarank Lightgbm
• Training data size: 5,5mio query items pairs
• Number of features: 46
• Pipeline running time (without finetuning): 1,5 hours
• We rerank top 200 results.
• We apply reranking on the whole catalog.

AB test metric % Change

Consolidated CR +1,37%

Ratio of sessions 
exiting after the 
1st MainSearch

-2,32%

Exit rate -1,63%
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