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Digitec Galaxus d &

7 Countries 350 Million Searches 100k
Austria, Belgium, Italy, in 2024 Daily Vector Searches
France, Germany,
Netherland, Switzerland

@-;p..ésl
5 Languages Over 2 Million Searches
Dutch, English, Italian, on Black Friday (2024)

French, German
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Search at Digitec Galaxus

Two teams, 13 people
* One team focuses on frontend and filtering
* Second team focuses on search relevance

* Shared platform for infrastructure

Abel Camacho Guardian Joel Widmer
Senior Analytics Engineer Search Engineer
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What is vector search?

@ T iphone
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Why do we need vector search?

el

( eiswurfel gross P

Nichts gefunden fir
«eiswurfel gross»

Vorschlige fir dich aufgrund deiner Suche

Q1 gross 999+ LLL -“HT f*
O eiswurfel 1 F-w-

* Roughly 10% of all searches ended up on a zero results page

* For many of these searches we do have relevant products which are not retrieved with keyword search
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The journey starts at MICES

NedaSMand -, SATURN

How semantic search projects

=

VECTORIZING
CONSUMER
ELECTRONIC GOODS

s 0
-4 N b/ B

g

MICES
June 2024

Roman Grebennikov | Delivery Hero SE | MICES 2024

Vectorizing consumer electronic goods - Ruchi Juneja, Johannes Peter - MICES 2024 How semantic search projects fail - Roman Grebennikov - MICES 2024
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A bouquet of insights from vector search AB-Tests
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Our process to bring a vector search model into an AB-Test

Model Factory

Model Factory: Create many model candidates
e Create a fine-tuning pipeline from raw data to model

 Many models never see the light of an AB-Test
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Our process to bring a vector search model into an AB-Test

Model Factory Offine Evaluation

Offline Evaluation: First step of model selection
* Give each simple tasks to the models and filter out the bad ones

e Qut of 100 products, which one fits best for “iphone”?

* How many of the top 10 products for “iphone” are from the category “smartphone”?
* Hypothesis: If a model is bad at those simple tasks, it is also bad at vector search

* The top models according to the offline evaluation are considered for the next step
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Our process to bring a vector search model into an AB-Test

Model Factory Offine Evaluation Human Evaluation

- &

Human Evaluation: Manual grading by an expert
e Actual zero result queries have very low volume, so implicit labels are unreliable
 We can get a feeling of the strengths and weaknesses of the models

* The two best models go into an AB-Test

We are in the process of enhancing human evaluation with LLM-as-a-judge
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Our process to bring a vector search model into an AB-Test

Model Factory Offine Evaluation Human Evaluation A/B test
—> - mm) |Alg
- —_

AB-Test: The ONLY true signal of model quality
e Only after the AB-Test we can truly say which model is better
e Custom metric to compare performance between vector search and zero results

e Ran AB-Tests only for one week, since signals were so strong
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Three challenging areas of vector search

* Indexing

* Query Time Latency

* Results Quality
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Measuring result quality

* How can we measure and compare result quality if our control group does not even show products?

* CTR does not work for O-result pages (control group).

We define a new metric “Search Success Rate”

Q Our data shows that a direct refinement happens within the first 30 seconds

Q Search Success = A click on any product within the first 30 seconds
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Pre-trained models are not good enough

* Pre-trained embedding models struggle to capture the nuance required for e-commerce search

* Fine-tuning only with product data is not enough.

Q Showing bad vector search results was overall worse than showing zero results pages

Q We saw a significantly lower search success rate and a significantly higher exit rate
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Pre-trained models are not good enough

® GALAXUS
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Showing bad vector search results was overall worse than showing zero results pages

1.4%
Presentation bias: higher clicks

on vector search results

. compared to zero-result pages.

1% Low-quality vector search
results negatively impact user
experience.
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Fine-tuning a pre-trained model

* We use a combination of product data and user behavioral data to fine-tune a pre-trained model

Q Product Data: Put our products into the context of natural language

Q The model learns about the products in different languages.

Q Behavioral Data: Link queries to products - postive examples (query, product, 1)
Q The model learns which products are relevant for a query.

() The model learns which queries are similar.
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Hard negative examples are the key for good fine-tuning

Q We use our existing product taxonomy to create hard negative examples

() We need hard negative examples to teach the model nuance

A hard example is a query-product pair where the product is very close to the intent but still wrong.

(iphone, smartphone case iphone, 0) - Although smartphone cases are taxonomically close to smartphones, they tend

to attract less user engagement when user search for iPhone.
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Behavioral data provides signals that help determine relevant products for queries.

® GALAXUS

eiswurfel gross

e

Nautilus (Doors Model)
The model better understands which products are

relevant to the 'eiswirfel grolR' query.
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After fine-tuning our model with product and behavioral data, along with several attempts,
we achieved a significant uplift in multiple business metrics

Uplift Baseline
+57% O-results

o A . .
Showing irrelevant +17% 0O-results with suggestions

products is worse than
showing no results

Probability of Clicking a Product After a Search

O-results O-results Fiat 1 Toyota-1 Doors Model
with Suggestions (1st A/B/C test) (2nd A/B/C test) (3rd A/B/C test)

Multilingual models designed to understand our product data.
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Conclusion

Q A custom metric helps us comparing zero result and vector search pages

Q Hard negative examples are crucial for fine-tuning. Use your product taxonomy!!

Q A helpful zero results page can be better than poor vector search results

Q If you want to build semantic search, start with the technology you know. In our case, we use Elasticsearch.

Q Implementing semantic search is not enough, you must prove its value to both users and the business
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Outlook

Q Introduce Hybrid Search for Low-Performance Keyword Queries

Q Improve the embedding model by better handling presentation bias in the training data used for fine-tuning.

(b\cyc\e x <;>

Ergebnisse fir «bicycle»

939 Produkte
Beliebte Filter
Sonstige Spiele | | Bicycle | | CHF20-50

Kategorie ) ( Mindestalter ) (sprache v ) (Mark <
Min. Anzahl Spieler ) ( Bewertung ) ( Max. Anzahi Spieler >) (Pret
Angebote v ) ( Veloteil ) ( Velowerkzeugtyp v Mehr Filter
Sortieren nach: Relevanz v | Verfiigbar: Postversand v = Top 4 vergleichen =

Kartenspiele 2 Kartenspiele ° Kartenspiele

890 9.90 21

Bicycle Doppeldeck Bicycle Sea king cards Bicycle Pokerkarten Metalluxe
Deutsch, Franzssiscl h Englisch Englisch

*okkkk 62 *hkkk 8 *k kS 40
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Thank you
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