

Beating the Status Quo Ranking on Shorthead Queries

On the way: building a Learning to Rank Model for OTTO Search

MICES 2022 | Team Ranking @ OTTO | Felix Rolf

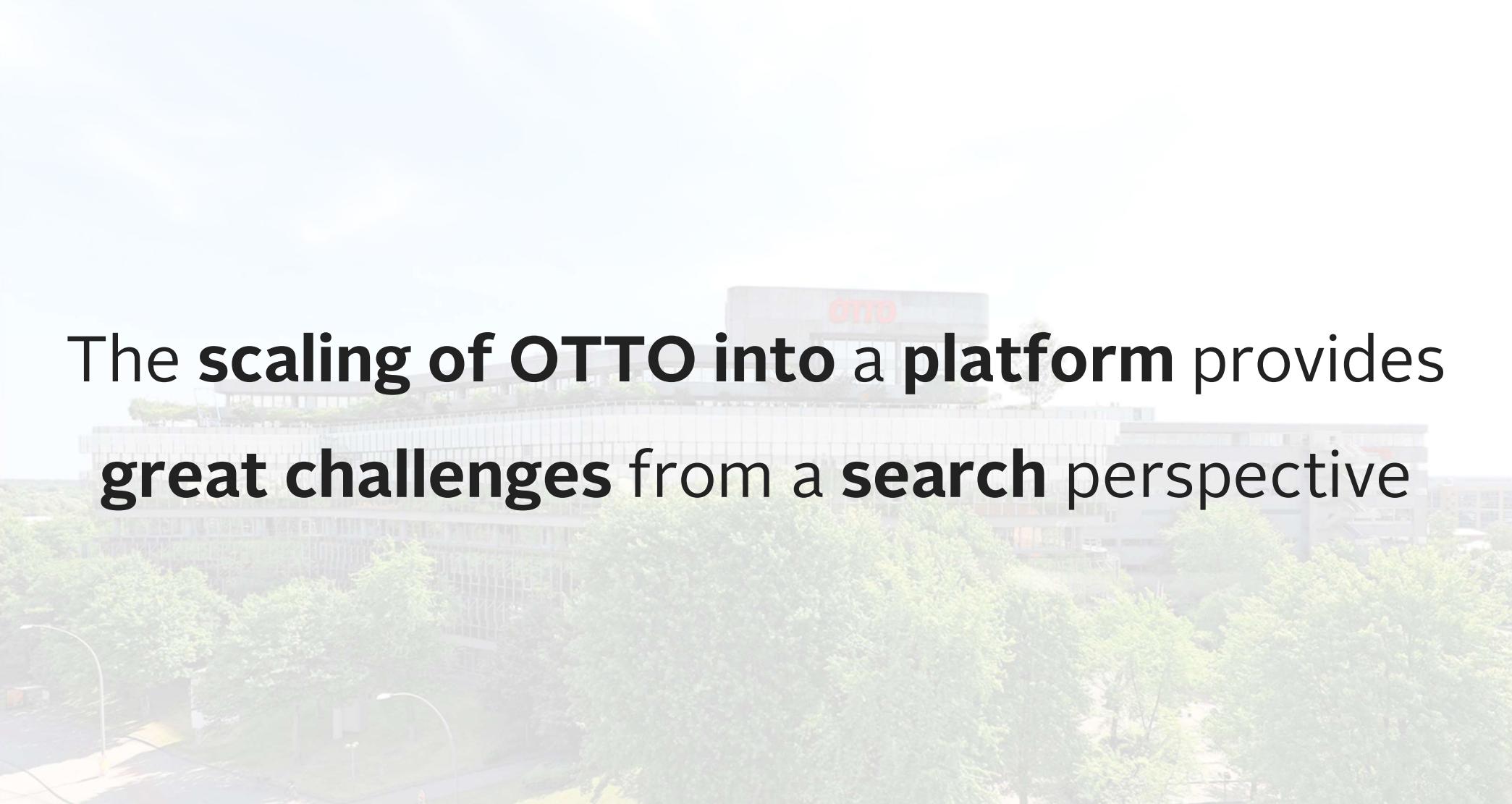
6.240 employees

GMV 6.9 billion EUR

11.5 million customers
of it **3.5** million new customers

2.89 million **qualified visits** per day
of it **70%** mobile

2021/22



The **scaling of OTTO into a platform** provides
great challenges from a **search** perspective

1 Increase in number of vendors & products available at OTTO

2 Heterogenous product data quality due to products from different sources

3 Optimization for customer relevance, not business KPIs

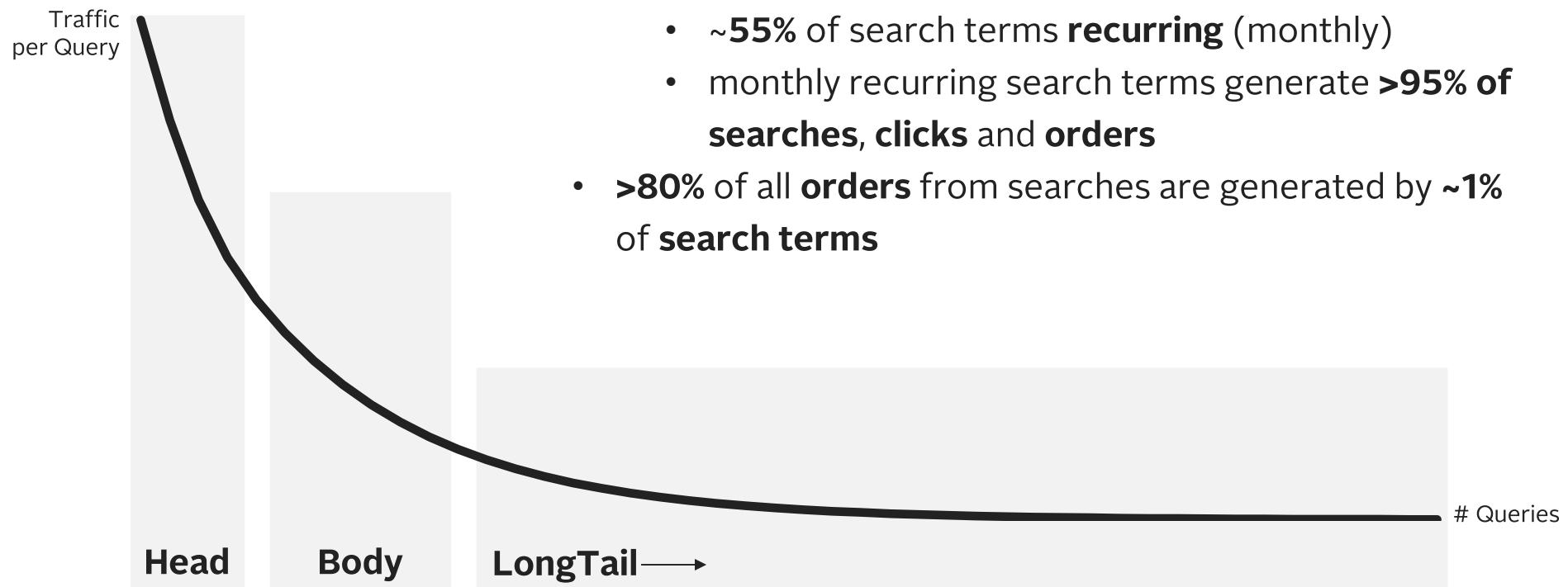
4 Increased number of body- and longtail searches

1

Increase in number of vendors & products available at OTTO

4

Increased number of **body-** and **longtail searches**



Currently we are **ranking** all search results based on a **rule-based, linear combination** of three **main ranking factors**:

- **Linguistic relevance**
- **Availability**
- **Popularity** (Units/Revenue)

Learning to Rank algorithms **enable** a ranking based on **true relevance** from a **customers** perspective

Training data with perfect product ordering per query

LTR Model

Ranking of any given list of products

Judgements

Give the perfect ordering of products per query for historic data

Features

Abstraction/Encoding of product, query and product-query-matching information

Training

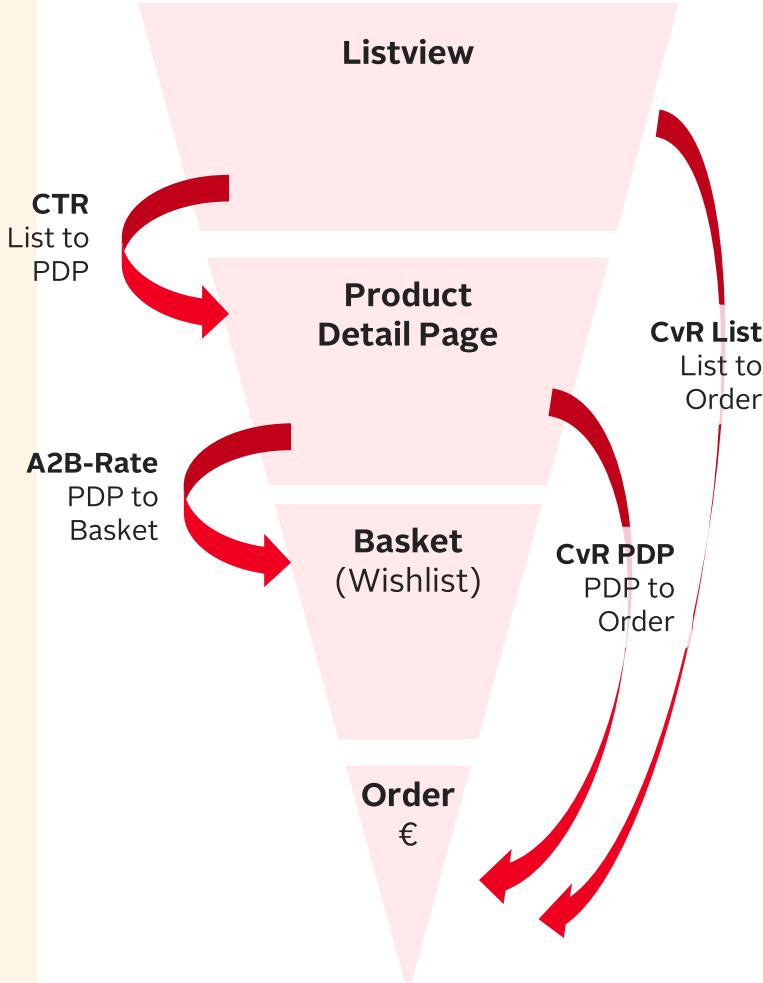
Find patterns in the data and understand relationships between features and relevance of products

Product 1 is more relevant than product 2 given query x

Trained ML Model

Can apply identified patterns to new data and deduce relevancy of unseen products/queries

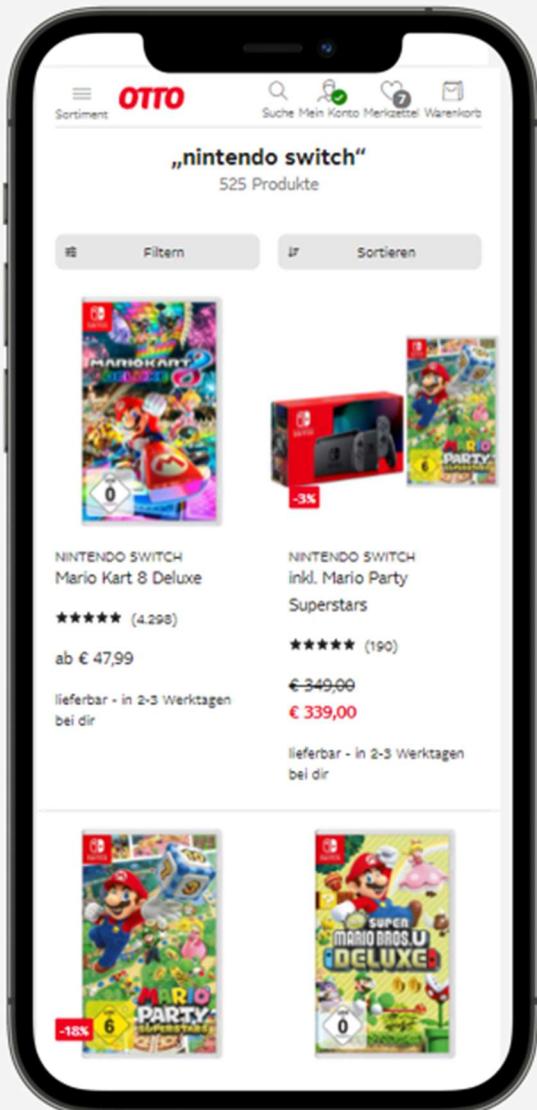
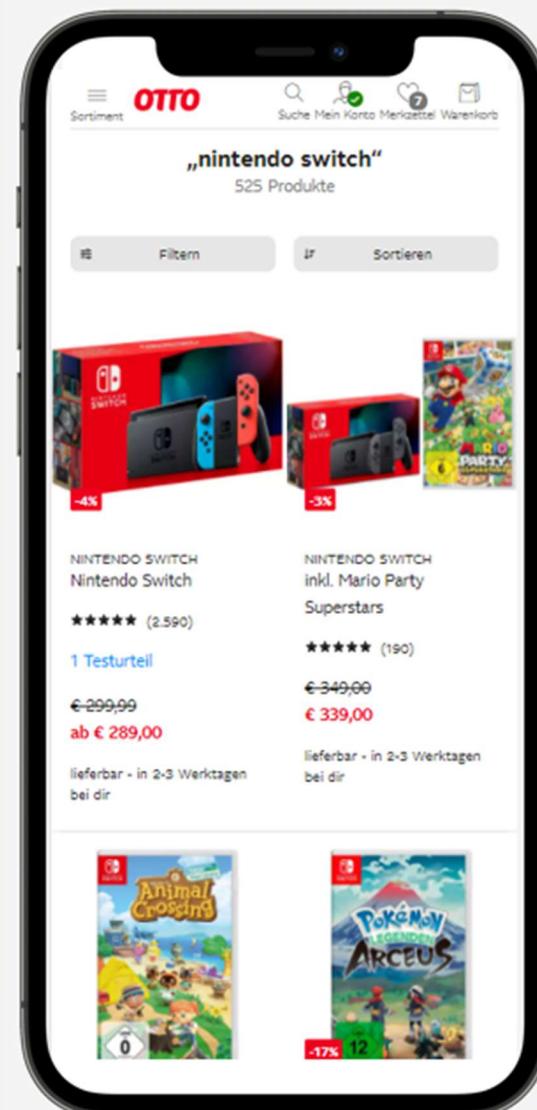
A Product with features like xyz is more relevant than a product with features abc given a query with features like 123



To find the **best ordering** of products, we **rank** our **shorthead** queries based on **customer interaction KPIs**

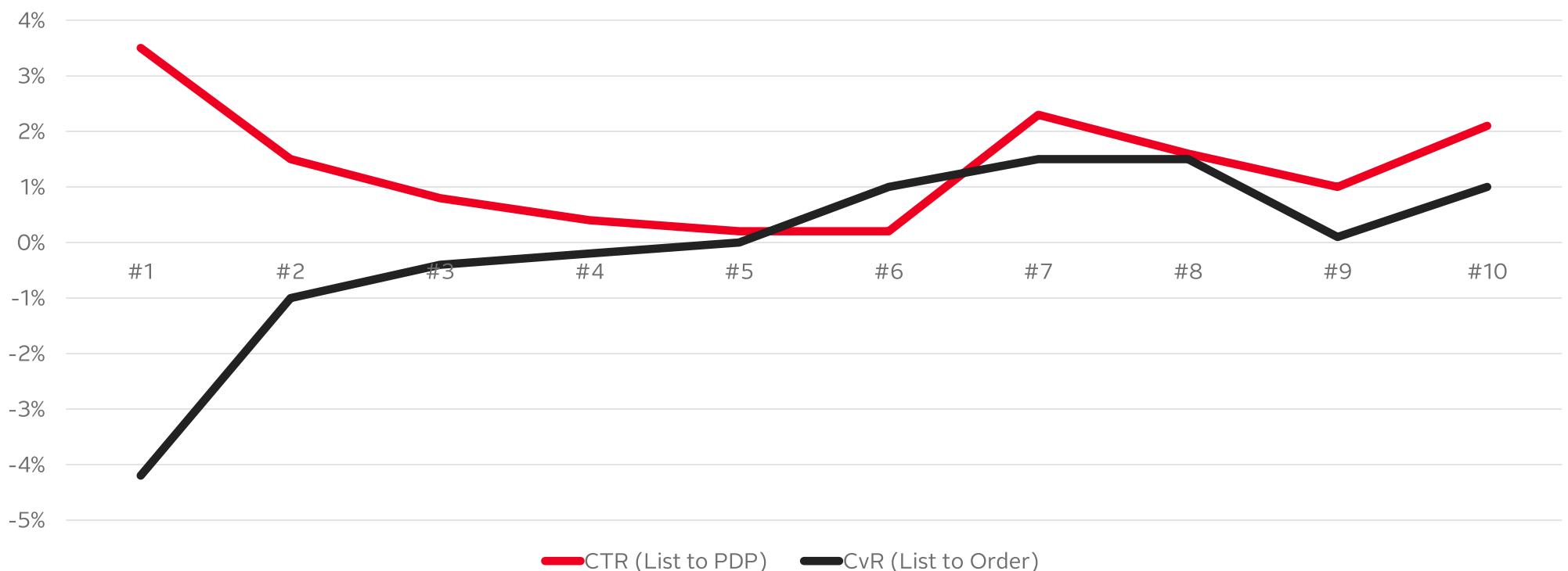
- 10 **onsite experiments** (A/B test)
- Shorthead: **~5.000 queries**
- Status Quo (A) against Judgements (B), reranked queries based on customer interaction KPIs
- Onsite experiments included Judgements ranked by:
 - **4x** on **CTR**
 - **1x** on **A2B-Rate**
 - **1x** on **CvR PDP**
 - **4x** on **CTR and CvR PDP**

Group A Status Quo

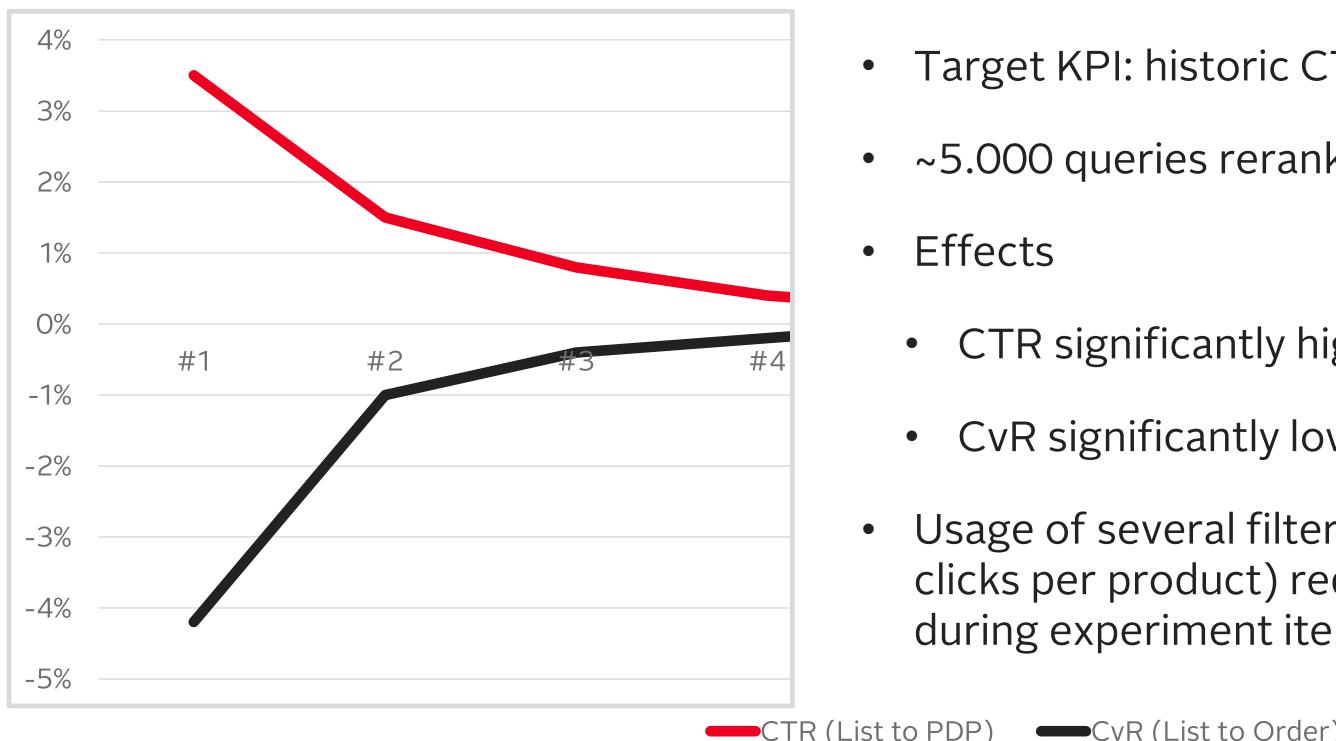


Group B Judgement

Within 10 A/B tests we **iteratively improved** the **CTR** and **CvR** performance of our **Judgement** against the **Status Quo**

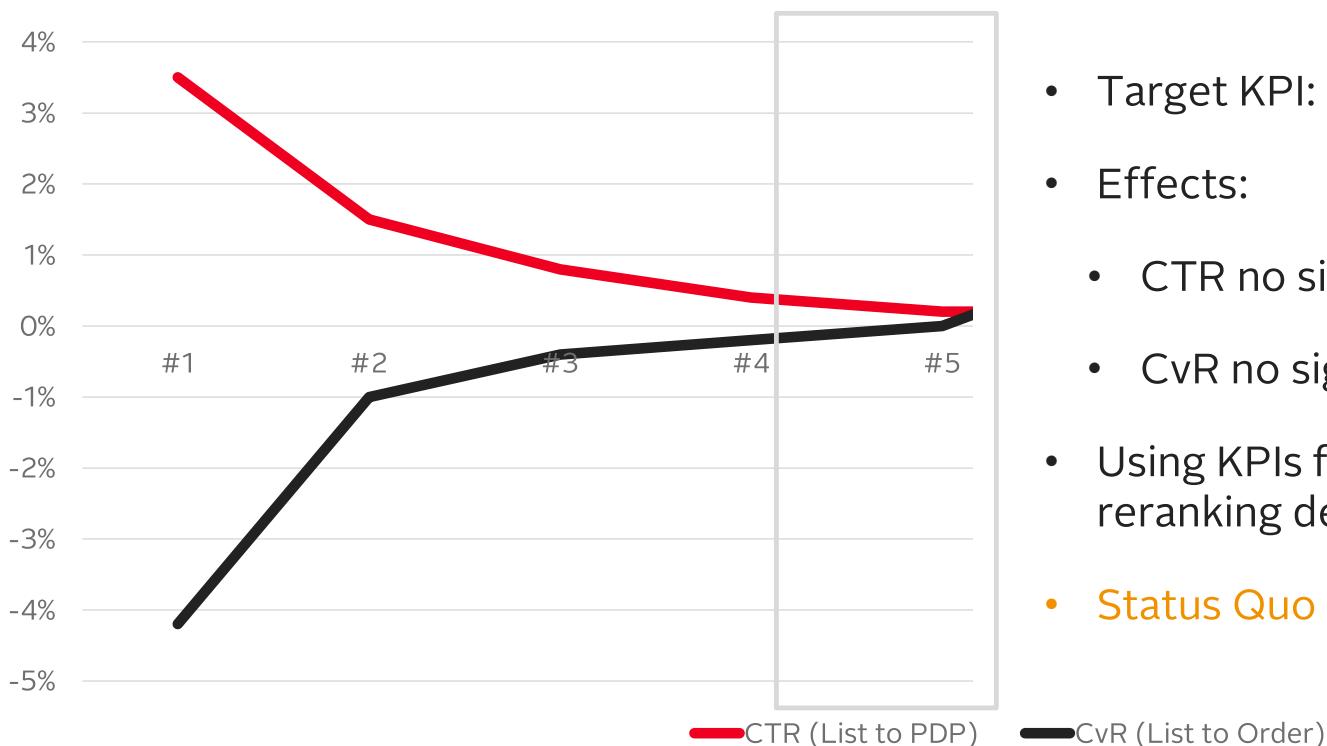


Our first A/B tests showed great CTR uplifts – yet poor CvR performance



- Target KPI: historic CTR of products per query
- ~5.000 queries reranked
- Effects
 - CTR significantly higher (+3.5%)
 - CvR significantly lower by (-4.2%)
 - Usage of several filters (e.g. availability, minimum number of clicks per product) reduced positive and negative effects during experiment iterations

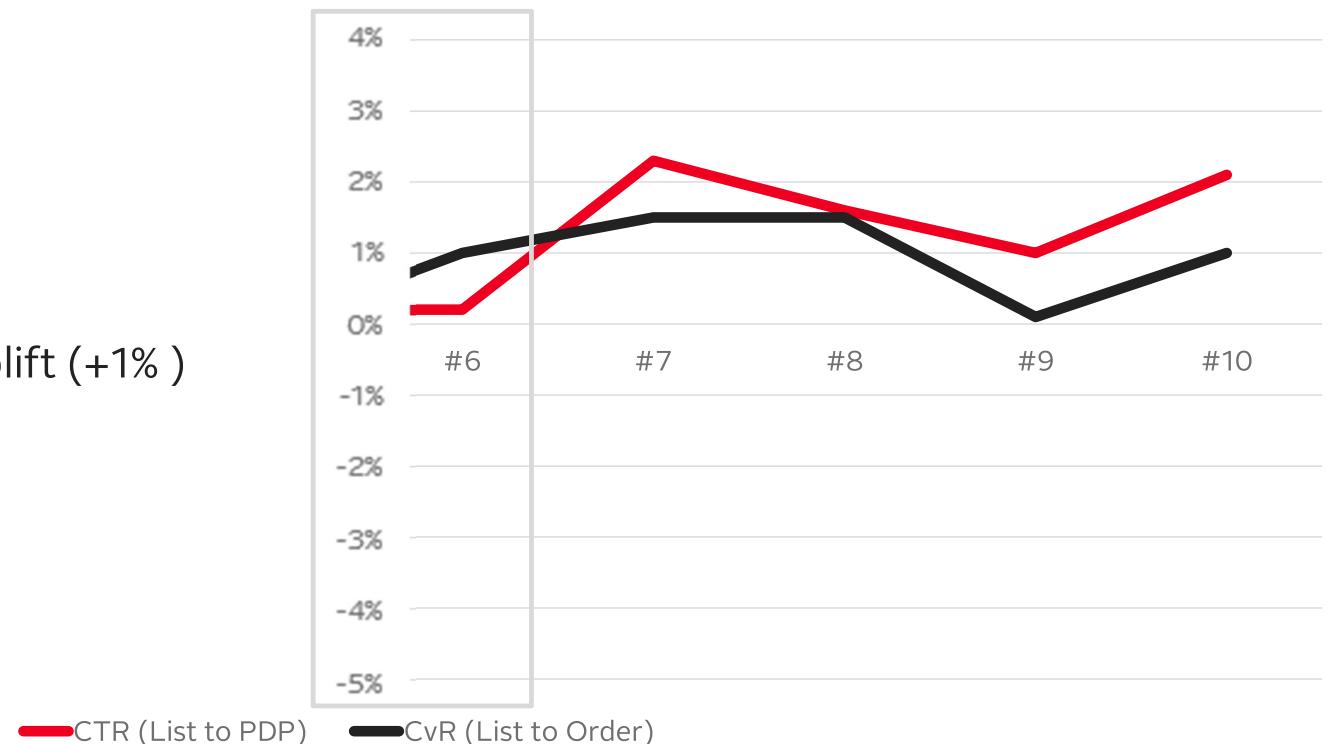
Reranking products by their **historic A2B-rate** showed more promising results – SQ ranking equalized



- Target KPI: A2B-rate (PDP to Basket)
- Effects:
 - CTR no significance (+0.2%)
 - CvR no significance (+0%)
- Using KPIs further down the search funnel for reranking delivers promising results
- Status Quo Ranking equalized, not yet beaten.

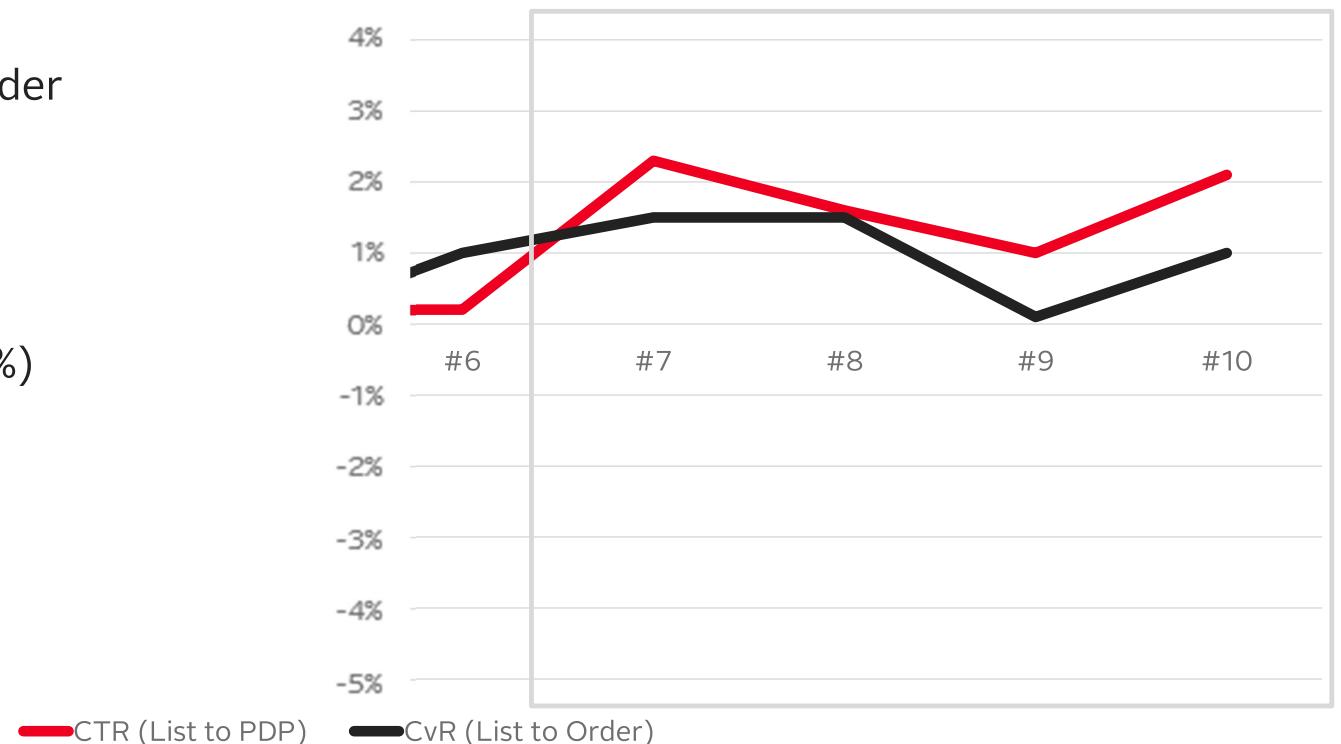
CvR based **target KPIs** lead to the **breakthrough** – Judgement significantly better than Status Quo

- Target KPI: CvR PDP to Order
- Effects:
 - CTR no significance (+0.2%)
 - CvR List to Order significant uplift (+1%)
- Status Quo ranking beaten. ☺



CvR based **target KPIs** lead to the **breakthrough** – Judgement significantly better than Status Quo

- Target KPI: CTR x CvR PDP to Order
- Effects
 - CTR significant uplift (+2.1%)
 - CvR List significant uplift (+1.0%)
- Status Quo ranking beaten. ☺



CvR based target KPIs lead to the breakthrough – Judgement significantly better than Status Quo

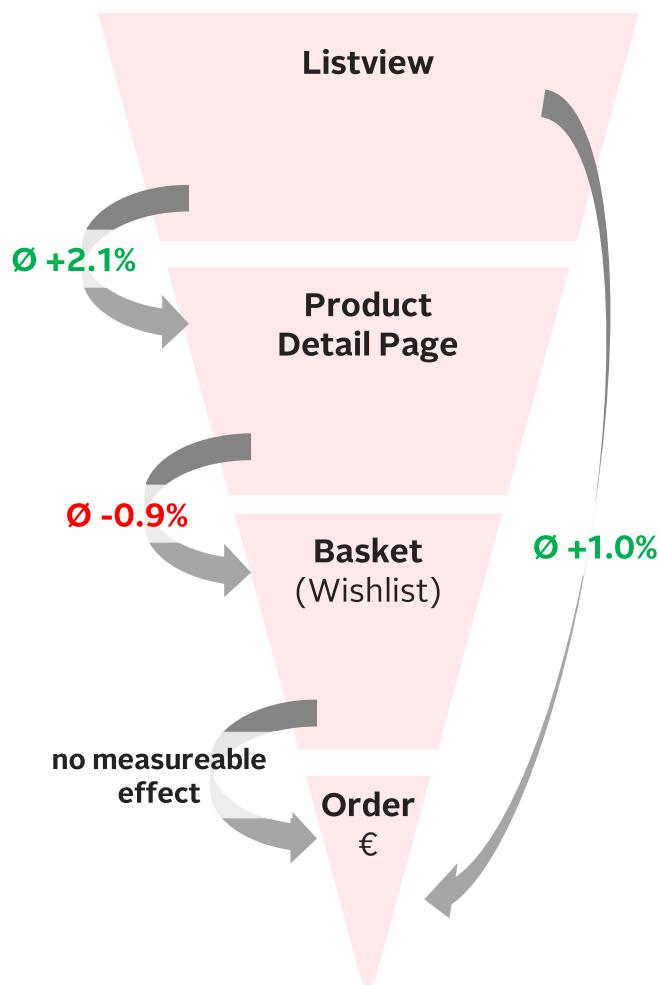
- Target KPI: CTR x CvR PDP to Order

- Effects

- CTR significant uplift (+2.1%)

- CvR List significant uplift (+10%)

- Status Quo ranking beaten. ☺



In detail: **strong CTR uplift** over-compensates a **weaker A2B-rate**

Search Funnel KPIs

- CTR uplift of Ø +2.1% (95% confidence interval between +1.8 to 2.4%)
- Increase in CTR compensates weaker A2B-rate
- Significant CvR improvement by Ø +1.0% (95% confidence interval between +0.4 to +1.6%)

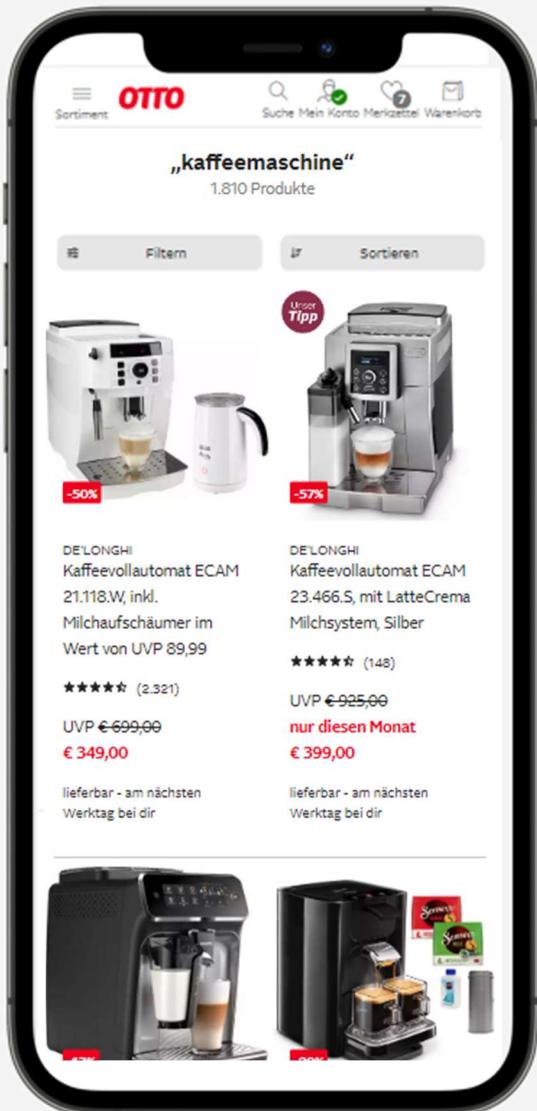
Ranking Change

- cheaper products on top 20 positions (-6.7% average price)
- fewer customers
 - use facets (-0.8%)
 - change sorting (e.g. -2.5% sort price ascending)

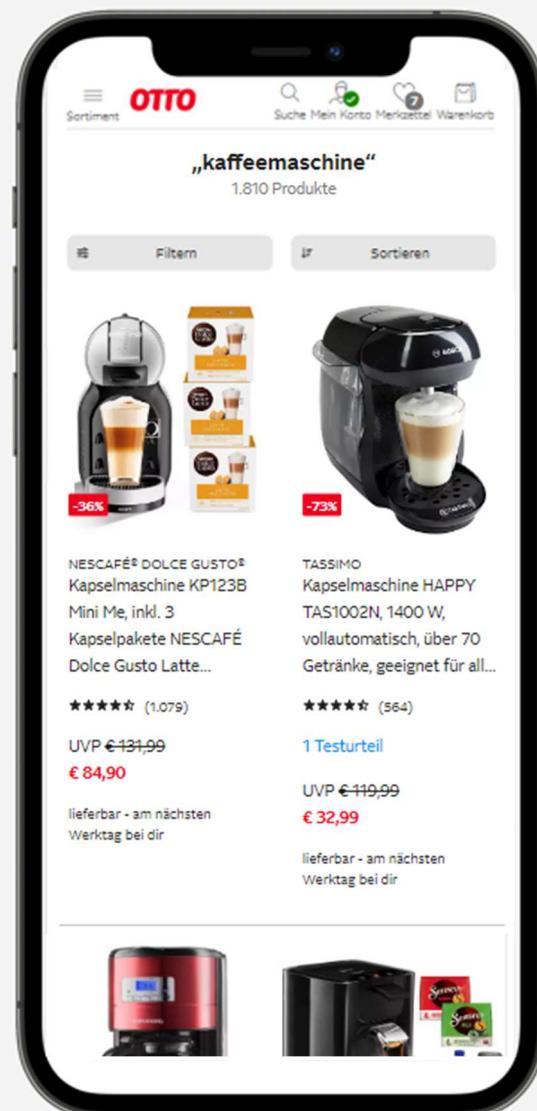
Economic KPIs

- more orders, yet lower AOV → no measurable effect on revenue

Group A Status Quo



Group B Judgement CTR x CVR PDP



Conclusion: Judgement based on combination of funnel KPIs, namely $CTR \times CVR$ (*PDP to Order*), improves ranking on shorthead

- **CTR** and **CvR List** significantly improved on ~5.000 queries
- Target KPIs that include **conversions** seem to work best for eCom ranking optimization
- **Next Steps:**
 - Go-live permanently with Judgements until LTR Model can transfer the uplift potential to all queries (Shorthead, Body, Longtail)
 - Use Judgements as training target for LTR models, also selectively test new Judgement ideas (e.g. sort by CvR List or Orders)
 - Iterate further on Models and API-infrastructure (e.g., scalability, ABC-test setup)

Thanks!