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Judgements as gold standard
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http://www.otto.de/


OTTO and otto.de
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OTTO‘s headquarter in Hamburg

• Founded in 1949

• Number of employees 4,900

• Revenue in 2018/19 3.2 billion Euro

• On average 1.6 million visits on otto.de per day

• Up to 10 orders per second

• More than 3 million items on otto.de

• More than 400 OTTO market partners

• Approx. 6,800 brands on otto.de

• Part of the OTTO GROUP, one of the world‘s biggest
ecommerce companies

• Expansion of the business model towards becoming a 
platform

• Part of the OTTO GROUP, which 
is one of the world‘s biggest 
ecommerce companies



Our Product Search @otto.de in 2020

MICES 2021 4

Ø search queries per day

search queries in 2020

max. search queries per day

unique search terms in 2020

~1.67 million

~612 million
~40 million

~4.8 million



Judgements...

...as a base for query understanding?
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Query Understanding

What does Query Understanding have to do with Judgements?
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NLP / Text Mining

=
NLP / Text Mining



Query Understanding

What does Query Understanding have to do with Judgements?
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NLP / Text Mining

Desired Products/
Result Set

Session 
Intent

User 
Understanding

Query 
Intent



What do Judgements have to do with Query Understanding?
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For me: a lot!

• Judgements are applicable in many use cases



Where do we get Judgements 
from?
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[https://sharethis.com/de/best-practices/2019/10/what-is-the-facebook-relevance-score/]

• Common DS approach: Crowd Sourcing or
asking experts

• Show them products or rankings and ask for 
relevance
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How do we estimate relevance?

Implicit feedback from customer logs – use the big data we have

• Covers topicality, but differs from relevance given a 
shopping intent (e.g. personal preference)

• Evaluated products are quickly outdated

[https://unsplash.com/photos/8I423fRMwjM]



How do we define relevance?
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Different customer interactions to choose from

• Deeper in the funnel

• Reliability grows

• Higher in the funnel

• Amount of data grows

• Proximity to search event grows

click

cart

order

view

keeping the product
and being happy with

it

Our assumption: increasing clicks will carry through the
funnel and increase conversions



Judgement Calculation
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query product clicks views
click 

probability
beta click 

probability

trousers A 1 1 1 0.046

trousers B 90 100 0.9 0.65

blue dress C 0 1 0 0.2

blue dress D 0 1000 0 0.0001

Betadistribution as Probabilityestimation



Positionbias
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Strong bias towards prominent positions –> inverse probability weighting

[https://www.slideshare.net/mohamedbaddar2/berlin-machinelearninggroup]



What can we use them for?
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Judgements are applicable in many use cases
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• Determining Query Intent
• Determine if query has a specific assortment 

as goal
• Determine desired assortment per query

• Determine current target of the User
• Specific product
• Purchase everyday items
• a.s.o.

• Training a Learning to Rank model
• ...

[https://www.atriainnovation.com/en/machine-learning-in-industry/]

[https://mangools.com/blog/identify-search-intent/]



Why start with LTR?
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• Current search management not scalable

• Full-range trader: generalize models over 
many different assortments

• Responsibility for search and other result 
pages

• Start with a clearly defined and measurable 
problem and goal



• We wanted to make sure we train our model with the right thing

• So we designed an experiment to test how the judgements work if 
presented to the customer

How do we know our definition of relevance matches the users' intent?
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• We have run 4 Experiments so far

• We are still on the way of finding the right definition of 
relevance for our customers



Experiment Learnings

What can we learn about query understanding from the deducted experiments?
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What we learned about understanding our customer through these 
experiments
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• Judgements show that availability matters a lot ...



What we learned about understanding our customer through these 
experiments
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What we learned about understanding our customer through these 
experiments
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• Judgements show that availability matters a lot – but not for all queries



What we learned about understanding our customer through these 
experiments
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What we learned about understanding our customer through these 
experiments
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• Judgements can only represent that information seen by the user



What we learned about understanding our customer through these 
experiments
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• Clicks are a good relevance signal for some queries - but not for all​



And what next?
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• Understand which Judgements represent the users needs
• Use different user-signals, e.g. add2carts/orders or 

involvement with SERP/article page
• Create more user understanding with our judgements

• Include qualitative feedback in experiments

• Use judgements for an LTR model
• Use judgements for query understanding

• Query segmentation
• Improve selection
• Query categorization [https://unsplash.com/]



Your job is just one step ahead!
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otto.de/jobs

• Search Engineer
• Java Developer/Cloud-OPs
• Data (Ingest) Engineer
• Data Scientist

For the topics:
• Query & Intent Understanding
• Data Ingest
• Ranking 
• Search Core Retrieval
• …
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Thank You!

I am looking forward to your questions during the panel
discussion☺

andrea.schuett@otto.de


